Invariant tori for the cubic Szegö equation
نویسندگان
چکیده
منابع مشابه
Invariant Tori through Direct Solution of the Hamilton-jacobi Equation*
We explore a method to compute invariant tori in phase space for classical non-integrable Hamiltonian systems. The procedure is to solve the HamiltonJacobi equation stated as a system of equations for Fourier coefficients of the generating function. The system is truncated to a finite number of Fourier modes and solved numerically by Newton’s method. The resulting canonical transformation serve...
متن کاملConstructive invariant theory for tori
© Annales de l’institut Fourier, 1993, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichie...
متن کاملInvariant tori for Hamiltonian PDE
Many of the central equations of mathematical physics, the nonlinear wave equation, the nonlinear Schrödinger equation, the Euler equations for free surfaces, can be posed as Hamiltonian systems with infinitely many degrees of freedom. In a neighborhood of an equilibrium, the linearized equations are those of a harmonic oscillator and thus solutions exhibit periodic and quasi-periodic motion. T...
متن کاملCubic spline Numerov type approach for solution of Helmholtz equation
We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...
متن کاملStable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation.
We demonstrate the existence of stable toroidal dissipative solitons with the inner phase field in the form of rotating spirals, corresponding to vorticity S=0, 1, and 2, in the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity. The stable solitons easily self-trap from pulses with embedded vorticity. The stability is corroborated by accurate computation of growth rates for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2011
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-011-0342-7